Gravity

Name \qquad Class \qquad

1. Write mass or weight next to each statement below to show what it is describing.

a)	The amount of 'stuff' in an object.	
b)	The force due to gravity acting on a mass.	
c)	Measured in newtons.	
d)	Measured in kilograms.	
e)	This value changes depending on the gravitational field strength acting on an object.	
f)	This value stays the same when the location of the object changes.	

2. Give the direction in which a gravitational force acts.
3. The gravitational field strength on Earth is approximately $10 \mathrm{~N} / \mathrm{kg}$.
a) Write down the equation which links gravitational field strength, mass and weight.
b) Calculate the weight of the objects below on Earth. Show your working.

weight $=$ \qquad N
mass $=0.02 \mathrm{~kg}$

\qquad
\qquad
\qquad
weight $=$ \qquad N
mass $=0.06 \mathrm{~kg}$

\qquad
\qquad
\qquad
weight $=$ \qquad N
4. The mass of the Moon is smaller than the mass of Earth.
a) Suggest how the weight of an astronaut would be affected if they travelled to the Moon.
b) Explain your answer.
c) An astronaut has a mass of 80 kg . On the Moon, they have a weight of 128 N . Calculate the gravitational field strength on the Moon.
gravitational field strength = \qquad N/kg

Gravity Answers

Name \qquad Class \qquad

1. Write mass or weight next to each statement below to show what it is describing.

a)	The amount of 'stuff' in an object.	mass
b)	The force due to gravity acting on a mass.	weight
c)	Measured in newtons.	weight
d)	Measured in kilograms.	mass
e)	This value changes depending on the gravitational field strength acting on an object.	weight
f)	This value stays the same when the location of the object changes.	mass

2. Give the direction in which a gravitational force acts.

Gravity acts towards the centre of mass of an object.
3. The gravitational field strength on Earth is approximately $10 \mathrm{~N} / \mathrm{kg}$.
a) Write down the equation which links gravitational field strength, mass and weight.
weight $=$ mass \times gravitational field strength
b) Calculate the weight of the objects below on Earth. Show your working.
mass $=1 \mathrm{~kg}$
mass $=0.02 \mathrm{~kg}$
mass $=0.06 \mathrm{~kg}$

$$
\begin{aligned}
& \text { weight }=0.02 \mathrm{~kg} \times 10 \mathrm{~N} / \mathrm{kg} \\
& \text { weight }=0.2 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& 60 \mathrm{~g}=0.06 \mathrm{~kg} \\
& \text { weight }=0.06 \mathrm{~kg} \times 10 \mathrm{~N} / \mathrm{kg} \\
& \text { weight }=0.6 \mathrm{~N}
\end{aligned}
$$

4. The mass of the Moon is smaller than the mass of Earth.
a) Suggest how the weight of an astronaut would be affected if they travelled to the Moon.

The astronaut's weight would decrease.
b) Explain your answer.

The Moon has a smaller gravitational field strength compared to Earth because it has a smaller mass than Earth. The astronaut would experience a smaller force due to the gravitational pull of the moon. This means they would have a smaller weight.
c) An astronaut has a mass of 80 kg . On the Moon, they have a weight of 128 N . Calculate the gravitational field strength on the Moon.
gravitational field strength $=$ weight \div mass

$$
\begin{aligned}
& =128 \div 80 \\
& =1.6
\end{aligned}
$$

Gravity

Name \qquad Class \qquad

1. Draw an arrow on the diagram below to show the direction of the force of gravity on the mouse.

2. Draw one line from each variable to the correct unit of measurement.
gravitational field strength

3. The mass of some objects is shown below.

The gravitational field strength on Earth is approximately 10N/kg.
Calculate the weight of the objects on Earth.
Use the equation:
weight $=$ mass \times gravitational field strength
mass $=1 \mathrm{~kg}$
mass $=0.02 \mathrm{~kg}$
mass $=0.06 \mathrm{~kg}$

\qquad
\qquad
\qquad
weight = \qquad Negent Studieqeigttw regentstundies.com
weight = \qquad N
4. The mass of the Moon is smaller than the mass of Earth.
a) Choose two answers from the box below to complete the sentences below.

greater than	equal to	smaller than

The gravitational field strength on Earth is \qquad the gravitational field strength on the Moon.

If an astronaut travelled to the Moon, their weight would be \qquad their weight on Earth.
b) An astronaut has a mass of 80 kg . On the Moon, they have a weight of 128 N . Calculate the gravitational field strength on the Moon.

Use the equation:

$$
\text { gravitational field strength }=\text { weight } \div \text { mass }
$$

\qquad
\qquad
\qquad
gravitational field strength = \qquad N/kg

Gravity Answers

1. Draw an arrow on the diagram below to show the direction of the force of gravity on the mouse.

2. Draw one line from each variable to the correct unit of measurement.

3. The mass of some objects is shown below.

The gravitational field strength on Earth is approximately $10 \mathrm{~N} / \mathrm{kg}$.
Calculate the weight of the objects on Earth.
Use the equation:
weight $=$ mass \times gravitational field strength
mass $=1 \mathrm{~kg}$

weight $=1 \mathrm{~kg} \times 10 \mathrm{~N} / \mathrm{kg}$
weight $=10 \mathrm{~N}$

$$
\text { mass }=0.02 \mathrm{~kg}
$$

weight $=0.02 \mathrm{~kg} \times 10 \mathrm{~N} / \mathrm{kg}$ weight $=0.2 \mathrm{~N}$

$$
\text { mass }=0.06 \mathrm{~kg}
$$

weight $=0.06 \mathrm{~kg} \times 10 \mathrm{~N} / \mathrm{kg}$
weight $=0.6 \mathrm{~N}$
4. The mass of the Moon is smaller than the mass of Earth.
a) Choose two answers from the box below to complete the sentences below.

greater than	equal to	smaller than

The gravitational field strength on Earth is greater than the gravitational field strength on the Moon.

If an astronaut travelled to the Moon, their weight would be smaller than their weight on Earth.
b) An astronaut has a mass of 80 kg . On the Moon, they have a weight of 128 N . Calculate the gravitational field strength on the Moon.

Use the equation:

$$
\text { gravitational field strength }=\text { weight } \div \text { mass }
$$

gravitational field strength $=128 \div 80$

$$
=1.6
$$

